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Abstract. The three results on the PageRank vector are preliminary
but shed light on the eigenstructure of a PageRank modified Markov
chain and what happens when changing the teleportation parameter in
the PageRank model. Computations with the derivative of the PageRank
vector with respect to the teleportation parameter show predictive ability
and identify an interesting set of pages from Wikipedia.
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1 Introduction

We present three results that touch on various aspects of PageRank computa-
tion [1–3]. Section 3 presents an analysis of the random walk in the PageRank
modification of a Markov chain. This analysis yields the eigenvalues and eigenvec-
tors of the PageRank Markov chain. While the eigenstructure of the PageRank
Markov matrix was previously known [4–7], our techniques are based on looking
at the n-step transition matrix.

Second, we consider the PageRank vector as a function of the teleportation
parameter α and examine a first order Taylor approximation in section 4. For
positive step sizes until α = 1, the Taylor approximation is a PageRank vector
for a different teleportation distribution vector.
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The next section presents an algorithm to compute the derivative of the
PageRank vector with respect to the teleportation parameter by solving two
PageRank problems. Algorithms to compute the derivative exist [8], but ours
only requires the solution of PageRank problems. The motivation for studying
the derivative is to understand how the ordering of the PageRank vector changes
with α.

Each of our theoretical contributions is illustrated with a computational ex-
ample in section 7. Two additional experiments examine the derivative. The
first explores the relationship between the numerical value of the derivative
and the change in rank of a page when increasing the teleportation parame-
ter (section 8.1), and the second exhibits a few pages with the largest derivative
(section 8.2).

An extended version of this report can be at found at http://sccm.stanford.
edu/wrap/pub-tech.html.

2 Notation

The vector e is the vector of all ones. Let P represent a column stochastic
matrix, that is eT P = eT and pi,j ≥ 0. We use the scalar variable α, 0 < α < 1
to denote the teleportation parameter in the PageRank problem and the vector v
to denote the teleportation distribution vector where eT v = 1 and vi > 0.1 The
PageRank vector is denoted x(P,v, α) and is the unique positive eigenvector
with eT x(P,v, α) = 1 of the eigenvalue problem[

αP + (1− α)veT
]
x(P,v, α) = x(P,v, α). (1)

This equation can be interpreted as a Markov chain where we denote the trans-
posed transition matrix by

M = αP + (1− α)veT (2)

and interpret M as a modified Markov matrix for the PageRank problem. We
also exploit the normalization eT x(P,v, α) = 1 and write the PageRank vector
as the solution of the linear system

(I− αP)x(P,v, α) = (1− α)v. (3)

Where we believe the parameters are clear from context, we will shorten the
PageRank vector to either x or x(α). Langville and Meyer summarize numerous
additional properties of these two formulations of the PageRank problem in their
book [3].

1 In the most general setting, we need not require vi > 0 but this requirement simplifies
many technical matters associated with the results.
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3 The Markovian Eigenstructure of the Modified Markov
Matrix

Our first result is about the eigenstructure of the modified Markov matrix in the
PageRank problem. One possible (and common) interpretation of equation (1) is
that the PageRank vector is the stationary distribution of a random walk where
with probability α, the walk follows an existing random walk given by P, and
with probability 1 − α, the walk resets to a prior distribution over states given
by v.

In the following derivation, we set the rank-1 matrix veT = R, so M =
αP + (1 − α)R. Our first lemma is about the n-step transition probabilities of
the PageRank random walk.

Lemma 1. The column-oriented n-step probability transition matrix for the mod-
ified random walk in the PageRank problem is

Mn = αnPn + (1− α)

[
n∑

k=1

αk−1Pk−1

]
R. (4)

We now use the lemma and a few carefully chosen expressions to rewrite
the n-step transition matrix and expose the eigenstructure of M. Using the
Neumann series of (I − αP)−1 =

∑∞
i=0 αiPi, the term

∑n
k=1 αk−1Pk−1 =

(I − αnPn)(I − αP)−1. We then introduce the Césaro limit matrix of P, Π =
limn→∞

1
n

∑n−1
i=0 Pi (which always exists for stochastic matrices), so that

Mn = (1− α)(I− αP)−1R

+ αnΠ[I− (1− α)(I− αP)−1R]

+ αn(Pn −Π)[I− (1− α)(I− αP)−1R].

(5)

Theorem 1. The matrix Mn has the following properties.

1. It has a column eigenvector x(P,v, α) and row eigenvector eT with eigen-
value 1.

2. If yT is a row eigenvector of P with eigenvalue 1 orthogonal to v, yT P =
yT ,2 then yT is a row eigenvector of Mn with eigenvalue αn.

3. If (fT , γ) is an eigenpair of P, fT P = γfT with γ 6= 1, then fT [I − (1 −
α)(I− αP)−1R] is a row eigenvector of Mn with eigenvalue αnγn.

From the eigenvectors and eigenvalues of Mn we can write the eigenvalues
and eigenvectors of the matrix M itself. Let YT be the matrix of row eigenvectors
of P with eigenvalue 1 orthogonal to v, that is YT P = P and YT v = 0. Also,
let FT be the matrix of row eigenvectors of P with non-dominant eigenvalues

2 Such a vector need not exist.
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Λ, FT P = ΛFT , then eT

YT

FT [I− (1− α)(I− αP)−1R]

M

=

1
αI

αΛ

 eT

YT

FT [I− (1− α)(I− αP)−1R]

 .

(6)

Another outcome of the previous theorem is that the eigenspace of M for
eigenvalue α is insensitive to changes in the teleportation parameter α.

4 A Result on a Taylor Step

We discovered the result in this section while investigating the sensitivity of the
PageRank vector x(P,v, α) with respect to the teleportation parameter α. As
in Golub and Greif’s earlier work [9], we look at sensitivity in the context of the
derivative of x(P,v, α) with respect to α. In the remainder of this section, we
write the PageRank vector as x(α) and drop the dependence on P and v. We
write x′(α) for ∂

∂αx(P,v, α).
We derive an analytic form for the derivative from the linear system formu-

lation of PageRank. Rewriting equation (3) slightly,

x(α) = αPx(α) + (1− α)v (7)

and if we differentiate both sides with respect to α

x′(α) = Px(α) + αPx′(α)− v. (8)

Theorem 2. Fix P,v, and α and let x(α) and x′(α) be the PageRank vector
and derivative with respect to α, then y(γ) = x(α)+γx′(α) is a PageRank vector
for 0 ≤ γ < 1 − α with teleportation distribution vector w(γ) = 1

1−α ((1 − α −
γ)v + γPx(α)).

An immediate implication of the previous theorem is that x′(α)i < 1
1−α

(otherwise y(1 − α − ε)i > 1 for some small but positive ε). Using different
techniques, Langville and Meyer prove a slightly stronger version of the previous
remark that |x′(α)i| < 1

1−α [3, p.66].

5 Computing the Derivative by Solving PageRank

In this section we address computing the PageRank derivative vector with re-
spect to α. One property of the derivative that we exploit is eT x′(α) = 0, which
follows directly from the fact that eT x(α) = 1 for any α. For additional theoret-
ical properties of the derivative, see Langville and Meyer [3, section 6.5]. In this
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section, we adopt the notation of the previous section to refer to a PageRank
vector x(α) and its derivative x′(α) = ∂

∂αx(P,v, α).
In contrast with other methods for computing the derivative [8, 2, 9], our

method involves solving only PageRank problems. This feature allows our algo-
rithm to benefit from any algorithmic advances in computing PageRank.

The key to this result is an observation by Golub and Greif [9], Px(α) −
v = 1

α (x(α) − v). We use this result to simplify equation (8) and express the
PageRank derivative vector as x′(α) = βz(α) − βx(α) where (I − αP)z(α) =
(1 − α)x(α) and β = 1

α(1−α) . This idea yields an algorithm for computing the
PageRank derivative as the solution of two PageRank systems with different
teleportation distribution vectors with the same value of α. Berkhin also made
this observation [2].

One concern with the previous approach is that it requires computing Page-
Rank for a column stochastic matrix P. For computational reasons, many codes
for PageRank often choose to work with an almost stochastic matrix P where
(eT P)i = {0, 1}. Often the matrix P = P + vdT where dT = eT − eT P and
v is the same teleportation distribution vector [10]. Boldi et al. call the ensu-
ing formulation of PageRank strongly preferential PageRank in contrast with
weakly preferential PageRank where P = P + udT for a distinct distribution
vector u [11]. To maximize our computational advantage, we want to solve only
strongly preferential PageRank problems. A simple application of the previous
idea no longer works because the strongly preferential PageRank system for z(α)
is not linear with respect to the derivative linear system.

To address the non-linearity issue, we can rewrite the derivative as the solu-
tion of the linear system (I − αP)x′(α) = 1

αx(α) + ηv, where η is an unknown
scalar. The solution of a strongly preferential PageRank problem is also a solu-
tion vector for the system I−αP with a rescaled right hand side. To compute η,
we exploit the fact that eT x′(α) = 0. Combining these ideas yields the following
algorithm.

1. Compute x(α) as the solution to the original strongly preferential PageRank
problem.

2. Compute z(α) as the solution to the strongly preferential PageRank problem
with teleportation distribution x(α).

3. Set z̃ = 1
α(1−α+αdT z(α))

z(α).

4. Compute η = −eT z̃
eT x(α)

.
5. Return x′(α) = z̃ + ηx(α).

6 Datasets

Table 1 shows a series of properties about the datasets used in the forthcoming
experiments. The graphs aa-stan, ee-stan, and cs-stan correspond to the web
graphs for the hosts aa.stanford.edu, ee.stanford.edu, and cs.stanford.
edu, respectively. These graphs were formed as a subset of the Webbase 2001
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crawl [12] compressed with the Webgraph framework [13]. The graph cnr-2000
is the result of an Ubicrawler crawl [14].

Wikipedia provides access to semi-regular copies of its English page database.
We downloaded the databases from late September 2006 [15] and early November
2006 [16]. From each database, we formed an article-article link graph, where
an article is a page in the main Wikipedia namespace, for example http://
en.wikipedia.org/wiki/PageRank; a category page, for example http://en.
wikipedia.org/wiki/Category:Matrix_theory; or a portal page, for example
http://en.wikipedia.org/wiki/Portal:Mathematics. We removed all other
pages and links.

Graph |V| |E| |C| max |Ci| max dout max din |dout = 0| |din = 0|
aa-stan 114 229 3 112 109 110 2 0
ee-stan 1,615 7,046 531 653 210 221 465 38
cs-stan 9,914 36,854 4,391 2,759 277 340 2,861 699
cnr-2000 325,557 3,216,152 100,977 112,023 2,716 18,235 78,056 0
wiki-2006-09 2,983,494 37,269,096 975,731 2,003,668 5,852 159,378 88,970 873,634
wiki-2006-11 3,148,440 39,383,235 1,040,035 2,104,115 6,576 168,685 91,462 932,906

Table 1. The table presents properties of the datasets we use for experiments. Each
row of the table lists the number of vertices (|V |), number of edges (|E|), number of
strongly connected components (|C|), size of the largest strongly connected component
(max |Ci|), maximum out-degree of a vertex (max dout), maximum in-degree of a vertex
(max din), count of nodes with no out-links (|dout = 0|), and count of nodes with no
in-links (|din = 0|).

7 Theoretical Examples

Unless otherwise noted, the experiments use the strongly preferential PageRank
model with α = 0.85 and a uniform teleportation distribution vector. For a
directed adjacency matrix A, P = AD+ where D+ is the pseudo-inverse of the
diagonal matrix of out-degrees for each node.

7.1 Eigenstructure

Tables 2-3 show experiments on the three smallest graphs to check the results of
the eigenstructure of the matrix M. The results confirm the analysis with good
accuracy. We believe the eigenvalue counts in table 2 are not exact between M
and P due to large numbers of eigenvalues quite close to the real and imaginary
axes which made counting them exactly difficult. On cs-stan, ARPACK found
an additional eigenvalue at α in M not predicted by our theory, but the third
column in table 3 shows ARPACK missed this eigenvalue in P.
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aa-stan ee-stan cs-stan

P M P M P M

#λi ∈ R 114 114 1391 1496 198 198
#λi ∈ C 0 0 224 238 2 2
#|λi| < ε 108 108 762 764 0 5
#|λi − 1| < ε 1 1 13 1 111 1
#|λi − (−1)| < ε 1 1 0 0 16 0
#|λi − α| < ε 0 0 0 12 0 112
#|λi − (−α)| < ε 0 0 0 0 0 16

Table 2. An evaluation of the spectrum for three of the examples. The entries
show the number of real and complex eigenvalues for each matrix as well as the
number of eigenvalues close to 0, 1,−1, α, and −α. For these experiments, we took
ε = 100000εmach ≈ 2 × 10−11. The graph cs-stan was too large to compute all the
eigenvalues and we used ARPACK [17] from Matlab’s eigs function to compute the
top 200 eigenvalues and eigenvectors by largest magnitude.

Graph ‖YTM− αYT‖F ‖F̃TM− αΛF̃T‖F ‖ZTP− ZT‖F
aa-stan - 1.7× 10−15 -

ee-stan 1.1× 10−13 3.4× 10−13 8.4× 10−13

cs-stan 1.1× 10−12 5.2× 10−13 1.0× 10−12

Table 3. The matrix aa-stan has only a single dominant eigenvalue so the set of
eigenvectors in Y is empty. The notation for the matrices is from section 3 but with
F̃T = FT [I−(1−α)(I−αP)−1R] . The matrix Z is the set of eigenvectors corresponding
to eigenvalue α computed for the matrix M.
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7.2 Sensitivity

To confirm theorem 2, we examine the difference y(γ)−x(P,w(γ), α) in table 4.
The norms of the difference are quite small, demonstrating experimental evidence
for the theorem.

Graph γ = 0.001 γ = 0.01 γ = 0.1

aa-stan 1.72× 10−10 1.72× 10−9 4.30× 10−8

ee-stan 5.62× 10−11 5.62× 10−10 5.62× 10−9

cs-stan 5.31× 10−11 5.31× 10−10 2.90× 10−10

cnr-2000 1.79× 10−10 1.79× 10−9 5.35× 10−9

Table 4. The table entries show the value of ‖y(γ)−x(P,w(γ), α)‖2 using the notation
from section 4.

8 Experiments on the PageRank vector and its derivative

8.1 Does a negative derivative justify a change in ranking?

One of the most promising uses of the derivative vector is to evaluate what
happens in the PageRank vector at different values of α. Table 5 shows some
preliminary results on this idea where we look at the fraction of pages with
negative derivative that actually decrease in rank when increasing α by a value
γ. The fraction predicted by the derivative is higher than the average fraction
predicted by a random vector. Currently, we do not consider the magnitude of
the derivative with these predictions.

8.2 What are the pages with largest derivative?

For the largest strongly connected component of wiki-2006-11, table 6 lists the
top 20 pages with largest derivative for a few values of α. Most of the pages that
appear in the top 20 list are also highly ranked according to the PageRank value.
Additionally, pages in the category namespace in Wikipedia are highly ranked
by both PageRank and its derivative for the two largest values of α evaluated.
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